Physicists at a U.S. laboratory said on Monday they have come tantalizingly close to proving the existence of the elusive subatomic Higgs boson - often called the "God particle" because it may bring mass and order to the universe.
The announcement by the Fermi National Accelerator Lab outside Chicago came two days before physicists at CERN, the European particle accelerator near Geneva, are set to unveil their own findings in the Higgs hunt. CERN houses the world's most powerful particle accelerator, the Large Hadron Collider (LHC).
The Fermilab scientists found hints of the Higgs in the debris from trillions of collisions between beams of protons and anti-protons over 10 years at the lab's now-shuttered Tevatron accelerator.
But the evidence still fell short of the scientific threshold for proof of the discovery of the particle, they said, in that the same collision debris hinting at the existence of the Higgs could also come from other subatomic particles.
"This is the best answer that is out there at the moment," said physicist Rob Roser of Fermilab, which is run by the U.S. Department of Energy. "The Tevatron data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in Europe to establish a firm discovery."
Scientists have worked long and hard to prove the existence of the Higgs boson, the final piece of a model proposed four decades ago laying out the basic building blocks of matter in the universe.
The Higgs particle's presumed power to confer mass seems to endow it with the power of creation itself, which helped lead to its "God particle" nickname. Many physicists loathe the term, fretting that it makes their discipline seem self-aggrandizing.
"These intriguing hints from the Tevatron appear to support the results from the LHC shown at CERN in December," said Dan Tovey, professor of particle physics at the University of Sheffield in Britain.
"The results are particularly important because they use a completely different and complementary way of searching for the Higgs boson. This gives us more confidence that what we are seeing is really evidence of new physics rather than just a statistical fluke," Tovey added.
The announcement by the Fermi National Accelerator Lab outside Chicago came two days before physicists at CERN, the European particle accelerator near Geneva, are set to unveil their own findings in the Higgs hunt. CERN houses the world's most powerful particle accelerator, the Large Hadron Collider (LHC).
The Fermilab scientists found hints of the Higgs in the debris from trillions of collisions between beams of protons and anti-protons over 10 years at the lab's now-shuttered Tevatron accelerator.
But the evidence still fell short of the scientific threshold for proof of the discovery of the particle, they said, in that the same collision debris hinting at the existence of the Higgs could also come from other subatomic particles.
"This is the best answer that is out there at the moment," said physicist Rob Roser of Fermilab, which is run by the U.S. Department of Energy. "The Tevatron data strongly point toward the existence of the Higgs boson, but it will take results from the experiments at the Large Hadron Collider in Europe to establish a firm discovery."
Scientists have worked long and hard to prove the existence of the Higgs boson, the final piece of a model proposed four decades ago laying out the basic building blocks of matter in the universe.
The Higgs particle's presumed power to confer mass seems to endow it with the power of creation itself, which helped lead to its "God particle" nickname. Many physicists loathe the term, fretting that it makes their discipline seem self-aggrandizing.
"These intriguing hints from the Tevatron appear to support the results from the LHC shown at CERN in December," said Dan Tovey, professor of particle physics at the University of Sheffield in Britain.
"The results are particularly important because they use a completely different and complementary way of searching for the Higgs boson. This gives us more confidence that what we are seeing is really evidence of new physics rather than just a statistical fluke," Tovey added.
No comments:
Post a Comment